An Integrated Syntactic And Semantic System For Natural Language Understanding
نویسندگان
چکیده
La strat6gie pr6sent6e i c ies t it l'origine d'un systi~mc int6gr6 de Traitement Automatique du Langage Naturel le syst~me PLUS (Progressive Language Understanding System), dans lequel les composantes thdoriques traditionnelles, syntaxe, s6mantique et diseours, sont li~es pour former un tout. Le syst~me est ~crit dmls uu seul formalisme, PLNLP (Programming Language for Natural Language Processing; Heidorn 1972), qui fonmit une architecture efficace pour unifier les diff6rentes composantes. Le syst~me offre une strat6gie 616gante pour la compr6hension du Langage Naturel h large couverture, et ind6pendante du domaine d'application. A rheure actuelle, six eomposantes constituent le syst~me PLUS/PLNLP; elles peuvent 8ire rapidemeut d6crites de la fa~on suivante: (1) syntaxe (PEG, la grammaire PLNLP de l'anglais), (2) syntaxe affin6e (rattachement des constituants), (3) d6rivation d'une forme logique (PEGASUS), (4) d6sambiguisation, (5) normalisation des relations s6mantiques, (6) module du discours au nivean des Ixaragraphes.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملDynamically Combining Syntax and Semantics in Natural Language Processing
A controversy has existed over the interaction of syntax and semantics in natural language understanding systems. According to theories of integrated parsing, syntactic and semantic processing should take place simultaneously, with the parsing process driven by a single rule base which contains both syntactic and semantic knowledge. This is in sharp contrast to traditional linguistic approaches...
متن کاملNatural Language Understanding: Integrating Syntaz, Semantics, and Discourse
Objeeti~ea: (1) Creation of an integrated, portable system for the detailed understanding of multi-paragraph text and messages. (2). Develop a principled computational treatment of semantic and discourse phenomena, including treatment of reference and temporal information. (3) Development of an integrated loglc-based analysis algorithm which uses syntactic, semantic and discourse information to...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملAn Approach to Natural Speech Understanding Based on Stochastic Models in a Hierarchical Structure
In this paper, an approach for understanding natural speech by means of two stochastic knowledge bases is presented: Within a given domain, the semantic model generates possible semantic structures, which are semantic representations close to the word level. Corresponding to such a semantic structure, the syntactic model generates word chains using hierarchical Hidden-MarkovModels. Integrated i...
متن کاملThe Impatient Tutor: An Integrated Language Understanding System
We describe a language understanding system that uses the techniques of segmenting the computation into autonomous modules that co, municate by message passing. The goal is to integrate semantic and syntactic processing to achieve greater flexibility and robustness in the design of language understanding systems.
متن کامل